Section 2.3 The Basic Limit Laws

(1) The Limit Laws
(2) Examples
(3) Assumptions Matter

Basic Limit Laws:

Assume that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ each exist.
Identity and Constant Laws $\quad \lim _{x \rightarrow c} x=c \quad \lim _{x \rightarrow c} 1=1$
Sum Law
Constant Multiple Law
Product Law

$$
\lim _{x \rightarrow c}(f(x)+g(x))=\left(\hat{\left.\left.\lim _{x \rightarrow c} f(x)\right)+\left(\lim _{x \rightarrow c} g(x)\right), ~\right)}\right.
$$

$$
\lim _{x \rightarrow c}(k f(x))=k\left(\lim _{x \rightarrow c} f(x)\right)
$$

$$
\lim _{x \rightarrow c}(f(x) g(x))=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)
$$

Quotient Law
If $\lim _{x \rightarrow c} g(x) \neq 0$,

$$
\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
$$

Power Law
If n is an integer,

$$
\lim _{x \rightarrow c}\left(f(x)^{n}\right)=\left(\lim _{x \rightarrow c} f(x)\right)^{n}
$$

(I) $\lim _{x \rightarrow c} x^{3}+4 x^{2}-3$
(II) $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}$
(III) $\lim _{x \rightarrow c} \frac{x^{2}-2 x-15}{x^{2}-9}$

Example IV

$$
\begin{aligned}
& \lim _{x \rightarrow-1} f(x)=3 \\
& \lim _{x \rightarrow 2} f(x)=-1
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-1} g(x) & =-2 \\
\lim _{x \rightarrow 2} g(x) & =4
\end{aligned}
$$

With the above limit information, evaluate the limits:
(i) $\lim _{x \rightarrow-1}(2 f(x)-3 g(x))=2 \cdot 3-3 \cdot(-2)=12$
(ii) $\lim _{x \rightarrow 2} \frac{x \sqrt{g(x)}}{f(x)^{2}}=\frac{2 \sqrt{4}}{(-1)^{2}}=4$
(iii) $\lim _{x \rightarrow-1} \frac{g(-2 x)}{x^{2}}$???? (Solved in section 2.4!)

Assumptions Matter

Every Basic Limit Law rests upon the assumption that the limits exist! If either limit fails to exist, the limit laws cannot be applied:
(Example V) The Product Law cannot be applied to $\lim _{x \rightarrow 0} f(x) g(x)$ if $f(x)=x$ and $g(x)=x^{-1}$.

For all $x \neq 0$, we have $f(x) g(x)=x \cdot x^{-1}=1$, so the limit of the product exists:

$$
\lim _{x \rightarrow 0} f(x) g(x)=\lim _{x \rightarrow 0} 1=1
$$

However, $\lim _{x \rightarrow 0} x^{-1}$ does not exist! Therefore, it is incorrect to use the Product Law to evaluate the limit. In this case,

$$
\lim _{x \rightarrow 0} f(x) g(x) \neq\left(\lim _{x \rightarrow 0} f(x)\right)\left(\lim _{x \rightarrow 0} g(x)\right)
$$

Assumptions Matter

Every Basic Limit Law rests upon the assumption that the limits exist! If either limit fails to exist, the limit laws cannot be applied. However, the combination of limits may exist anyway!
(Example VI) Give an example where $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ exists, but neither $\lim _{x \rightarrow c} f(x)$ nor $\lim _{x \rightarrow c} g(x)$ exist.

An infinite number of examples exist. The simplest example may be $c=0$ and $f(x)=g(x)=x^{-1}$.

- $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow 0} x^{-1}$ does not exist.
- On the other hand, $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} 1=1$.

